IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Critical phenomena at surfaces in a model of nonequilibrium phase transitions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 2869
(http://iopscience.iop.org/0305-4470/24/12/025)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:53

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J Phys A Math Gen 24 (1991) 2869-2876 Prnted in the UK

Critical phenomena at surfaces in a model of non-equilibrium
phase transitions

Michel Drozt§, Laurent Frachebourgi$ and Maria C Marquest

t Department of Theoretical Physics, Untversity of Geneva, 1211 Geneva 4, Switzerland
1 Centro de Fisica, Universidade do Porto, 4600 Porto, Portugal

Recerved 6 December 1990, 1n final form 28 March 1991

Abstract. Criticsl phenomena at surfaces are studied 1n a simple tweo-dimensional model
of non-equilibriym phase fransitions belonging to the class of interacting particle systems
Mean field renormalization grovp approach and numerical simulations are used to deter-
mne the phase diagram for this systemn and some of the cnitical exponents associated with
ordinary, special, extraordinary and surface phase transitions

1. Iatroduction

Critical phenomena at surfaces have been extensively studied in the past years in the
framework of equilibrium phase transition [11. The presence of free surfaces adds a
rich complexity to the bulk critical phenomena. Besides the case where both the bulk
and the surface become ordered simultaneously {ordinary transition}, one finds cases
in which the surface is ordered while the bulk is disordered (surface transition) or
more complicated situations [1].

Several predictions from scaling theories and repormalization group approach have
been tested on exactly solvable models or by numerical simulations and our present
understanding of the surface equilibrium transitions is quite satisfactory. The study of
surface critical phenomena is related to several important physical problems such as
wetting, polymer adsorption and surface reconstruction.

Although the situation is well understood for equilibrium critical phenomena,
nothing is known for systems having non-equilibrium bulk phase transitions. One of
the reasons is that there is no first principle theery for non-equilibrium systems. Thus,
we cannot approach the problems of bulk or sbrface phase transitions on a general
footing. Accordingly, it is of interest to investigate the surface and bulk critical
behaviour of simple models having bulk non-equilibrium phase transition and investi
pate whether or not predictions similar to those of equilibrium scaling theory hold in
the non-equilibrium case.

An interesting class of such models is the one called interacting particle systems
[2]. These are Markov processes on a lattice where the sites can have two states (vacant
or occupicd). The enumeration of the state of occupancy of all the lattice sites defines
the configuration or the state of the system. Transitions between different configurations
occur via elementary progesses, relaied to the creation, annihilation or hopping of
particles. These models have one adsorbing state for which the lattice is completely
empty (or full).
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A pariicular example of such a model, called model A, was recently introducsd by
Dickman [3, 4]. We shall study in this paper a semi-infinite two-dimensional version
having a (one-dimensional) free surface. For sequential dynamics, for which at most
ene clementary process occurs per unit of time, the original A mode} belongs to the
universality class of direcied percolation [5, 6]. For parallel dynamics, the question of
universality is still controversial [7, 8], so we shall mainly consider here the case of
sequential dynamics.

The paper is organized as follows. In section 2 we precisely define the model. In
section 3, we treat both problems of the bulk and surface phase transitions in mean
field renormalization group approximation. The phase diagram shows ordinary,
extraordinary, surface and special transiions. Some relations between critical
exponents are also derived. Those results are compared with the ones of numerical
simulation performed in section 4. Finally, conclusions are drawn in section 5.

2. The model

Model A gives a simple description of poisoning transitions similar to those observed
on catalytic surfaces. One considers a d-dimensional substratum covered by a regular

hypercubic lattice. Each site has two possible states: empty or cccupied by a particle
A. The first step of the dynamical process is adsorption. The probability for a vacant
site to become occuplied during a short time interval 8t is ppét. The second step of the
process is desorption. The probability for an occupied site x to become vacant is ggét,
provided that at least one of the nearest neighbours of x is vacant. During the time
interval 8¢, one of the two processes occurs at each site. For simplicity we shall restrict
ourselves to the case gp = (1 — pg). Moreover, we shall consider a semi-infinite system
and we restrict ourselves to the two-dimensional case.

Let us first consider the buik. Each site has four nearest neighbours. Qualitatively
speaking, one expects that if py is large enough, an initially empty substratum will be
completely covered, by A particles, after some time. This is the poisoned phase or the
adsorbing state. However, if pp is small enough, the desorbing smechanism will be
efficient enough to prevent such a poisoning. Thus one may anticipate the existence
of a threshold value pg, such that, in the stationary siate, the covering fraction of A
ot the substratum X, will be 1 for py= pg. (poisoned phase) and smaller than 1 for
Pa<pnc. If 1 — Xp{ pp} varies continuously across py. the transition will be of second
order and its behaviour near the threshold will be described in terms of the bulk critical
exponent Bg:

Xe(pe) = (1= Xal pu)) ~ (Poe— Pa)*™. 2.1

Let us now consider a semi-infinite system with a free surface (see figure 1). Each site
on the surface has only three nearest neighbours. Moreover, we assume that the
probability of adsorption on the surface, ps, can differ from that for the bulk. The
problem is thus characterized by two control parameters py and ps. The probability
of desorbtion on the surface is chosen as gs=1—ps.

Intuitively, one expects that for py = pg,, several situations can occur on the surface
as a function of ps. The surface can be poisoned for ps large enough or not poisoned
for small vafues of pg. _ ) ) )

Note moreover that for pp =1, we recover the one-dimensional bulk problem.
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Figure 1. Semi-infinite lattice studied The bold line correspands to the free surface s,
and Cg, are the clusters considered to locate the surface transition, while Ca, and Cy, are
the clusters considered for the bulk transiiion

3. Mean-field renormalization group approach

It is well established that the mean field renormalization group approach gives an
efficient way to compute qualitatively correct phase diagrams. This method has been
successfully applied to several problems of equilibrium phase transitions [9-11] and
to non-equilibrinm situations [12, 131,

The mean field renormalization group method is a combination of usual mean field
strategy with scaling or renormalization group ideas. It proceeds in two steps. First,
one computes the order parameter ¥ for a finite cluster of N sites and a control
parameter p. To abtain a non-zero value, one has to add a symmetry breaking field b
at the boundary of the cluster. One then computes the order parameter ¥’ for a smaller
cluster N'<< N sites, with a boundary field b’ and control parameter p'. As one is
interested in the location of a second order transition point, one considers arbitrary
small symmetry breaking fields. The equations for the order parameters ¥ and ¥ can
then be linearized in the fields. Assuming that the two order parameters rescale in the
same way as the two symmetry-hreaking fields, one obtains an implicit relation p’ = f( p}
for the control parameter of the model, which can be interpreted as a renormalization
group transformation. The critical fixed point of this transformation gives the critical
value of the control parameter p..

In our problem, the order parameters are the probabilities Xu(ps,ps) and
X pa, ps), of a site belonging to the bulk or to the surface respectively being empty.

These quantitics are expressed in terms cf the stationary values of certain joint
probabilities that the sites of a cluster are empty or not. Following the general strategy
outlined above, we shall consider clusters of four sites and two sites. Depending on
whether we are investigating the bulk or the surface transition, those clusters will be
located completely in the bulk or partially in the buik and partiaily on the surface as
illustrated on figure 1. Let us start with the two-site claster Cs, corresponding to the
surface transition {see figure 1). We shall study the time evolution of P{oy, o3, 1), the
probability that the site 1 on the surface and the site 2 in the bulk are respectively in
the states o, and a,. Let x}; be the probability that a bulk site outside the cluster is
occupied, and x§, the probability that a surface site outside the cluster is occupied.
We make the approximation that xj does not depend on the depth of the site. Then
the evolution rules of the model with sequential dynamics lead to the following
equations of motion for the two-site probabilities (omitting to write explicitly the time
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dependence):
B(1,1)= P(1,0)p5+ P(0, )ps— P(1, D gs(1 - x$) +qu(1-x5)]  (3.1)

P(1,0) = P(0, 0)ps + P(1, Dga(1—x5) — P(1,0)(g5+pu) 3.2)

P(0, 1) = P(C, O)pu+ P(1, Dga(1 - xF)]~ PO, 1}(ps+ qn) (3.3)

P(0,0)= P(1,0)g5+ P(0, )gn— P(0, 0)( ps+ p5)- (3.4)
In terms of the stationary solutions P,.., one has

Xi(ps, ph) = 1 — X5(ps, Po) = Pua(0,0) + Poa(0, 1), (3.5)

For py > pg. 2 possible surface-like transition line will be given by setting g =1 — x5 =0
and F5=1-x5->0. Then
XUps, pe) = g2 ps, pp)xs+ O(xF (3.6)
where g,( p5, p3} is a known function noi given explicitly,
A similar calculation can be done for the four-site cluster Cg, (see figure 1). In
terms of the stationary values of the probabilities P{o;, oa, 03, 7y, t), that the sites 1

and 2 on the surface and the sites 3 and 4 in the bulk are respectively in the states o,
o3, o3 and &, one has:

)?s(!’s; Pa)=1—Xs(ps, pu)
=P..(0,0,0,0)+P,.(0,0,0,1)+P(0,0,1,0)+ P,(0,0,1, 1}
[P, (1,0,0,0+ P, (1,0,1,0}+ P,.(2,0,0, 1)+ P,.(1,0,1, 1)
+P(0,1,0,00+ P (0,1, 1, )+ P (0, 1,0, 1)+ P, 0,1, 1, 1)1, 3.7)

The four-siie probabilities can be computed along the same line as developed for the
iwo-site ones. We shail not give here the explicit forms which are quite heavy. After
some tedious algebra, one finds:

Xs(ps, P} =g Ps, Pu)ist O(%3). (3.8)

Within the present mean field renormalization group approach, the -itical line corre-
sponding to the surface transition (line BS on figure 2) is the solution of:

8a( Pse, Pe) = 8 Psc» Pu)- (3.9)

A similar mean field renormalization group argument cannot be done for pg < pg..
Indeed, in this case X} is finite and one would need to know iis explicit transformation
under renormalization te ¢btain an equation equivalent to (3.9). Such a transformation
is not accessible within this formalism.

For the bulk transition, the strategy is the same. One works with the clusters Cy;
and Cy, drawn in figure 1. These clusiers are far below the surface and hence are not
influenced by surface effects. Thus, it is justified to assume that the breaking fields are
independent of the depth of the sites. Accordingly, the only breaking fields that appear
are ¥y and xy. One finds that the bulk critical probability pg. is the solution of

2pa—9p+4=0. (3.10)

This corresponds to the ordinary transition at py.=0.728.

The complete phase diagram as determined by mean field renormalization group
is shown in figure 2. As for the equitibrium case, one finds ordinary, special, extra-
ordinary and surface transitions.
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Figure 2. Phase diagram obiamed by mean fiefd renormalization gfonp (full fine} and
simulation {(broken ine) The hine BC corresponds to the ordinary transition, the line AB
to the extraordinary one and the line BS to the surface transiion The special transition
takes place at B. The phases 1, I and 111 are respectively the phases in which, (1) the bulk
and the sutrace are poisoned, (11} the bulk is posoned but aot the surface and (I1) both
the surface and the bulk are not poisoned.

The next question to be addressed concerns the critical exponents. It is known that
although the mean field renormalization group method gives generally good phase
diagrams, the critical exponents are not as good, at least when small clusters are used,
which is the case 1n the present study.

As in any renormalization group approach, the correlation lenpth ex
obtained by studying the renormalization group recussion relation in the vicinity of
the fixed point solution. The value of » for the surface transition when pg— 1 and for
the ordinary transition when pg— py are the ones of the one-dimensional and two-
dimensional bulk models, which have already been estimated by mean field renormaliz-
ationt group [12]. )

More interesting is to study what happens in the vicinity of the special point (point
B in figure 2), where simultaneous ‘surface-bulk’ occurs. We have compuied the
exponent » [from dph/dpsip, p,. =1"", with the scaling factor ! =2'/"] along the line
of surface transition. In the vicinity of B, one gets » = 0.84. This critical line approaches
B lnearly, giving for the crossover exponent {defined as pg— pg.= ( p3”~ psc)*/ ) the
value ® = 1. If one assumes the usual crossover argument to hold alse for this non-
equilibrium case, one would have @ = p(d =2}/v(at B); and »(d =2)=0.84, a good
result if one compares with » =0.85 of more accurate studies [14]. i

Other quantities of interest are the critical exponents 8 for the bulk and the surface.
The behaviour of the order parameter Xs(ps, ps) along the surface transition iine, at
fixed value of pg, is characterized by the surface order parameter 8,, defined by

)?s(Ps) ~{Pse "Ps)'e‘- (3.11)

These exponents ~annot be calculated in the mean field renormalization group method.
However, Bp can be extracted from the results of the study of one cluster size, This

leads to the known result 8y =1, both for the one- and two-dimensional case [7]. For

ponent is easily
X ™ §
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the surface exponent §,, the situation is more subtie. However, one can use a one-site
mean field approximation to relate By with 8,.

Let X, bz the probability that a site belonging to the nth row below the surface is
empty. Thus, 5, =5 and X,..= X. In the steady state, the mean-field equation for
X, reads

%,(3pp—2) =[%sy + £y O N1~ pg). (3.12)

Going to the continuous limit, the coordinate z measures the distance of the rows from
the surface. The surface is at z =z, and the surface order parameter is X(z;) = %5. The
Jimit z->c0 corresponds to the bulk, with an order parameter Xg. Introducing the
extrapolation length A

=) (3.13)
dzl.-;, A

one finds after integration

#ila(pa—psc) +e(pp)r*1= a(pa—po.)¥h (3.14)

where a and c are finite coefficients and pg. =2 in this approximation. When the
extrapolation length remains finite, which is the case at the ordinary transitions, one
obtains the following relation among the-exponents:

Bi=Bs+1. (3.15}

Moreaver, when approaching the special transition, the extrapolation length A behaves
asympioticelly as

A~(pS—ps)” ) (3.16)
where p¥ is the value of ps at the special critical point. One then finds that
B1=Bs+10G-y) (3.17)

where O is the usual Heaviside function.

As will be scen in the next section, the relation (3.15) is approximately satisfied by
the results of the numerical simulatien, although the values of the exponent themselves
are far from their mean feld values.

4, Numerical simulation

The numerical simulation has been performed on a system of size 128 x 256 periodic
in the longer direction. For such size, the finite size effects are negligible [7]. Starting
from an empty surface, one waits N time steps per site 1o reach a stationary solution.
Then, the stationary solutions are obtained by averaging over N, mecasures each
separated by N, time steps over N, different samples. The values of N, and N, are
chosen in such a4 way that the fuctnations are negligible.

The first simulation coficerns the ordinary transition at p3=ps. With N,=2, N, =
1000, N,, =200 and N, = 10, one obtains

Prc= Psc~ 0,679 +0.002 Br=0.59+0.04 B1=1.0+0.08. (4.1)
The second simulation concerns a point on the surface transition line for which
=0.85> py.. With N, =5, N, =5000, N, =500 and N,,,= 10, one obtains

Pse=0.37650.003 31—0.25:1:0.05‘ (4.2)
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Note finally that for pp=1, one recovers the one-dimensional system for which
one knows that [3]

Pse™= Ppidm ™ 0.365 ﬁl == {}.28. (4-3}

This last value of the critical exponent 8, is the one of two-dimensionzl directed
percolation. Note that for ps < pg., one does not observe a surface transition for any
vaiue of ps<1. Thus one sees that the phase diagram obtained by simulaticn is
qualitatively similar to the mean field renormalization group predictions. Quantitatively,
the agreement is not bad.

Concerning the critical exponeists, the values for Bg and B, are quite far from the
mean field values. Note, however, that the relation (3.15) established in mean field
approximation is almosi satisfied by the numerical results obtained for the ordinary
transition.

Another interesting feature concerns the surface transition Simulations done with

nomllﬂ! dvnumlrc |'1 ‘§'| have shown that the surface exponent F@] was the same for

several pomts along the surface transition line. Moreover, one notes that the value
obtained for 8, is compatible with the value of the exponent correspending to_ the
tlimit case pp = 1, which is the one of the one-dimensional bulk case.

Note that such a behaviour is not necessarily present for equilibrium phase transi-
tions. Indeed, if one introduces a surface pactition function obtained by tracing cut
the degrees of freedom below the surface, then the associated effective one-dimensional
Hamiltonian is usuaily not the one-dimensional Hamiltonian of the original problem.

The fact that the two exponents ars the same means, in terms of renormalization
group arguments, that the fixed point corresponding to the special fransition is nnstable
and that its critical behaviour is governed by the more stable fixed point af py=1. A
similar situation has been found for the surface effects in the Potts model [16].

5. Conclusioas

The study of critical phenomena at surfaces in a simple model of non-equilibrium
phase transition shows that a similar richness 1o that found in equilibrium surface
critical phenomena is present. Namely, one finds ordinary, extraordinary, special and
surface phase transitions. The mean field renormalization group approach gives a good
description of the phase diagram. The critical exponents » obtained by this method
are reasonable. However, the exponents § obtained by simple mean field approach
are rather poor when compared with the results of the simulation.

As far as the special transition is concerned, the question of the form of the crossover
for the critical exponents B, and Bg in the vicinity of this critical point needs also to
be clarified. Several questions remain open concerning the critical exponents. More
information is needed (as for example the determirzats on of the correlation length

H aln 1l and curfars arnnnant ac it
KFJ\FUIIVII.I- 1’}, Lu I.F;El. ll Bhallllb lUlCll.lUllB UA!DI’. aluuu5 l)llll\ uuu AUV CALFURIVILL dd Il.

is the case in equilibrium. These points are under investigation.
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